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Vortex equilibrium in flows past bluff bodies
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The equilibrium conditions of a point vortex in the separated flow past a locally
deformed wall is studied in the framework of the two-dimensional potential flow.
Equilibrium locations are represented as fixed points of the vortex Hamiltonian
contour line map. Their pattern is ascribable to the Poincaré–Birkhoff fixed-point
theorem. An ‘equilibrium manifold’, representing the generalization of the Föppl
curve for circular cylinders, is defined for arbitrary bodies. The property ∂ω/∂ψ̃ =0
holds on it, with ψ̃ being the stream function and ω the streamline slope of the pure
potential flow.

A ‘Kutta manifold’ is defined as the locus of vortices in flows that separate at a
prescribed point (Kutta condition). The existence of standing vortices that satisfy the
Kutta condition is discussed for symmetric bodies. On the basis of an asymptotic
expansion of the equilibrium manifold, Kutta manifold and body geometry, it is shown
that different classes of symmetric bodies exist which are ranked by the number of
allowable standing vortices that satisfy the Kutta condition.

1. Introduction
Inviscid separated flows governed by the Euler equations can have multiple

solutions which depend on the multiple allowable distributions of vorticity over
the streamlines of the recirculating regions and on the Bernoulli constant jump at
their boundaries. For separated regions with closed streamlines, a class of solutions is
formed by standing vortex patches which are characterized by constant vorticity and
are completely, or partly, embedded in an external potential flow (hereafter simply
denoted as ‘vortex patches’). Their multiplicity is related to the different allowable
values of the area, Bernoulli constant at the boundary and circulation. The Batchelor
(1956) flow, which has the property of being the limit of the viscous solution for the
Reynolds number going to infinity, is one of these solutions.

The literature on this subject is very extensive. A thorough review and an exhaustive
bibliography was provided by Smith (1986). Examples and further references about
these solutions have been offered, for example, by Childress (1966), Sadovskii
(1971), Deem & Zabusky (1978), Pierrehumbert (1980), Saffman & Tanveer (1982),
Chernyshenko (1991), Turfus (1993), Elcrat et al. (2000), Crowdy & Marshall (2004).

The main inspiration of the present study is the flow past a semicircular bump,
as studied by Elcrat et al. (2000), where a rich structure of possible solutions of
such a flow is obtained as an evolution of standing point vortices. Point vortices
can in fact be considered as vanishing-area vortex regions and vortex patches can
be obtained as their accretions. The process of accretion provides a continuum of
constant-circulation and increasing-area standing vortex patches. Thus, standing point
vortices can be considered as seeds from which vortex patch families grow.
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In the flow past a semicircular bump, there is an infinite number of possible
standing point vortices. If we restrict the analysis to the solution pertinent to single
vortices, the Föppl curve (Föppl 1913) is the locus of such vortices.

Elcrat et al. (2000) showed that, for each standing vortex of the Föppl curve,
there is a family of vortex patches that starts from the zero-area point vortex to a
maximum-area vortex region that is bounded by the solid body. The family elements
are vortex patches with the same circulation as the Föppl point vortex and that are
embedded in a potential flow with closed streamlines. Thus, the family of recirculating
solutions is formed by two-level piecewise-constant-vorticity regions attached to the
body. The vorticity is ω =0 in the outer part and ω = κ/Aω in the inner part, with κ

being the circulation of the original point vortex and Aω the area of the inner patch.
The point vortex is the extremum element defined by Aω = 0. The other extremum is
the vortex patch that fills the entire region with closed streamlines.

A similar result was obtained by Pierrehumbert (1980) for vortex patches growing
from a point-vortex pair. In a similar context, Crowdy & Marshall (2004) have shown
that the corotating point-vortex pair and the Rankine vortex are connected by a
family of increasing area vortex patches that are in pure solid body rotation.

Thus, point-vortex solutions, besides their significance per se, are interesting as
starting vortex patch solutions. Moreover, there is the numerical suggestion that if
there is no point-vortex solution, there is no vortex-patch solution either. For instance,
as discussed in § 5, there is a class of bodies that does not admit standing point vortices
which satisfy the Kutta condition (by ‘Kutta condition’ is meant the requirement that
the flow velocity should not be singular at sharp edges). Preliminary numerical results
(Gallizio 2004) and ongoing research suggest that standing vortex patches, which
satisfy the Kutta condition, are not admitted either.

Point vortices offer a very simple low-order flow model that has been widely used
for many purposes. Many results in fluid dynamics have been obtained using this flow
model. The literature and textbooks contain many examples and the von Kármán
vortex street is one of the most well known of these. More recently, control strategies
for vortex shedding suppression have been based on the representation of vortical
structures by means of point vortices (Cortelezzi, Chen & Chang 1997; Zannetti &
Iollo 2003; Protas 2004). The same simple model was used by Chernyshenko et al.
(2003) to show the existence, in principle, of bodies free from adverse pressure gradient
regions and by Zannetti & Chernyshenko (2005) to design bodies capable of capturing
vortices. Meleshko & van Heijst (1994) offered examples in which the highly idealized
point-vortex model reveals surprisingly good agreement with experiments.

In this context, the present study addresses the problem of point-vortex equilibrium
conditions in the presence of arbitrarily shaped solid boundaries. With an approach
similar to Elcrat, Hu & Miller (1997), the classical formulation based on potential
flow and conformal mapping is adopted here to study the inviscid flow past arbitrarily
shaped bluff bodies. The Hamiltonian character of vortex motion is used to show that
the equilibrium positions of vortices are linked to the Poincaré–Birkhoff fixed-point
theorem. The Routh (1881) theory on vortex motion is used to show that, in general,
a manifold exists which is the locus of the single standing vortices and which can be
considered as the generalization of the Föppl curve.

The implications of the Kutta condition, which should be enforced on bodies with
sharp edges, lead to the definition of a Kutta manifold, which is the locus of the
vortices that satisfy the Kutta condition. The intersections of the Kutta manifold and
the equilibrium manifold are the locations of standing vortices that satisfy the Kutta
condition. It is known that these intersections may not exist. Smith & Clark (1986),
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for instance, showed that a flat plate orthogonal to the flow does not admit standing
vortices which satisfy the Kutta condition. This issue is addressed here for arbitrarily
shaped bodies.

The paper is organized as follows. In order to elucidate the relationship between
the Poincaré–Birkhoff fixed-point theorem and the vortex equilibria, the equilibrium
conditions of a point vortex standing in a flow swirling past a cylinder with an
arbitrary cross-section are considered in § 2. The study is extended to the flow past
infinite bodies in § 3, and to the flow inside a channel in § 4. The Kutta condition issue
is analysed in § 5, while § 6 is devoted to the concluding remarks.

2. Swirling flow
Let us first consider an irrotational flow swirling around the unit circle of the

complex ζ -plane, with ζ = ρ exp(iϕ). Let the potential swirling flow be induced by
a vortex with circulation Γ located at the unit circle centre ζ =0. We look for the
equilibrium conditions of a point vortex with circulation κ located outside the unit
circle in ζ = ζ0. The complex potential wζ then is

wζ =
Γ

2πi
log(ζ ) +

κ

2πi
log

(
ζ − ζ0

ζ − 1/ζ 	
0

)

with 	 denoting the complex conjugate. The complex velocity dwζ/dζ of fluid particles
is

dwζ

dζ
=

Γ

2πi

1

ζ
+

κ

2πi

(
1

ζ − ζ0

− 1

ζ − 1/ζ 	
0

)
and the conjugate velocity of the free vortex is

ζ̇ 	
0 =

Γ

2πi

1

ζ0

− κ

2πi

1

ζ0 − 1/ζ 	
0

. (2.1)

Equation (2.1) can be rearranged in the form of a one-degree-of-freedom autonomous
Hamiltonian dynamical system:

ρ̇0 =
∂Hζ

ρ0∂ϕ0

, ρ0ϕ̇0 = −∂Hζ

∂ρ0

, (2.2)

with Hζ being the Hamiltonian function:

Hζ = − Γ

4π
log(ρ2) +

κ

4π
log(ρ2 − 1). (2.3)

Since Hζ is conserved along the vortex trajectories, these, from (2.2) and (2.3), are
ρ = const circles along which the vortex velocity is constant:

ρ̇0 = 0, ϕ̇0 =
Γ

2π

1

ρ2
0

− κ

2π

1

ρ2
0 − 1

. (2.4)

For Γ/κ � 1 and κ < (>)0, the free vortex moves counterclockwise (clockwise) along
circular trajectories at any flow region point. For Γ/κ > 1 the free vortex stands in
equilibrium on the circle with radius

ρeq =

√
Γ/κ

Γ/κ − 1
. (2.5)
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Figure 1. Vortex Hamiltonian for Γ/κ =1.8: (a) circular cylinder; (b) circular finned
cylinder with ε = 0.01.

For ρ < ρeq the vortex moves counterclockwise (clockwise), and clockwise
(counterclockwise) for ρ > ρeq . Circular trajectories and the equilibrium circle are
shown for Γ/κ =1.8 on figure 1a) .

From the dynamical system theory point of view, the scenario is typical of the twist
map, with the ρ = ρeq circle being a fixed-point locus. According to the Poincaré–
Birkoff theorem (see Tabor 1989), the locus of fixed points breaks down under a
perturbation and a finite even number of fixed points survives. The surviving fixed-
point pattern is alternately made up of elliptic (stable) and hyperbolic (unstable) fixed
points.

This is represented on the right hand side of figure 1, with reference to a cylinder
with a fin on the top which acts as a flat plate orthogonal to the flow. As discussed
hereafter, the equilibrium points for the assigned Γ/κ ratio reduces to the four
fixed points of the new Hamiltonian contour map, with H1 and H2 being hyperbolic
(unstable) fixed points and E1 and E2 being elliptic (stable) fixed points.

Let the new perturbed flow be defined on the complex z-plane, with z = r exp(iϑ).
The finned cylinder can be obtained as a conformal representation of the unit
circle of the ζ -plane. The proper z = f (ζ ) mapping can be obtained by means of a
transformation chain. First, the modified Joukowski mapping

µ(ζ ) =

(
1 +

ε

2

)(
ζ − 1

ζ

)
+ iε

maps the unit circle of the ζ -plane onto the flat plate of the µ-plane with extrema at
µ = −2i and µ = 2i(1 + ε); then the inverse Joukowski transformation

z(µ) =
µ +

√
µ2 + 4

2



Vortex equilibrium in flows past bluff bodies 155

maps the flat plate onto the finned unit circle of the z-plane, with the fin extending
from z = i to z = i(1 + ε +

√
ε2 + 2ε). The mapping function then becomes

f (ζ ) = z(µ(ζ )).

Since the complex potential is invariant under conformal mapping, the complex
potential of the swirling and vortex flow past the finned cylinder is wz =wζ (ζ (z)),
with ζ (z) = f −1(z).

Let z0 = f (ζ0) be the vortex position on the z-plane; according to the Routh (1881)
rule (see also Clements 1973; Saffman 1992), the vortex velocity ż0 is given by

ż	
0 =

(
ζ ′	
0 − κ

4πi

d

dζ0

log
dz0

dζ0

)
dζ0

dz0

, (2.6)

with ζ ′	
0 given by (2.1). If the vortex location on the physical z-plane is expressed by

the (ρ0, ϕ0) coordinates of its ζ -plane image, the vortex equilibrium condition ż	
0 = 0

is given by the formula

ρ0ρ
′
0 − iρ2

0ϕ
′
0 − κ

4πi
ζ0

d

dζ0

log
dz0

dζ0

= 0. (2.7)

Its real and imaginary parts, together with (2.4), provide the two relationships

Im

(
ζ0

d

dζ0

log
dz0

dζ0

)
= 0, (2.8)

Re

(
ζ0

d

dζ0

log
dz0

dζ0

)
=

Γ

κ
− ρ2

0

ρ2
0 − 1

. (2.9)

Equation (2.8) is remarkable as it only depends on the body geometry and is
independent of the flow properties. It defines the z(ρ0, ϕ0)eq manifold of the vortex
equilibrium loci, equivalent to the Föppl curves. Since the Riemann mapping theorem
states that any simply connected region can be mapped onto the unit circle of the
ζ -plane, (2.8) holds for any cylinder with a simply connected cross-section.

For the flow past the finned circle under consideration, this manifold, mapped on
the physical z-plane, is represented by the four branch curves (h1, e1, h2, e2) shown
on figure 1(b). For each point (ρ0, ϕ0)eq of the manifold, (2.9) provides the Γ/κ ratio
pertinent to a standing vortex.

Equation (2.8) provides noticeable geometrical and physical properties of the vortex
equilibrium loci. Let us write the mapping derivative dz/dζ as dz/dζ = |dz/dζ | exp(iω),
with ω expressing the local rotation induced by the mapping on the z-plane with
respect to the ζ -plane. Equation (2.8) reduces to

∂ω

∂ρ
= 0. (2.10)

Moreover, for vanishing free vortex circulation, κ = 0, the complex potential of the
pure swirling flow is

wΓ = φΓ + iψΓ =
Γ

2πi
log(ζ ).

The angle ω can be interpreted as the difference in the slope of the streamlines
ψΓ =const between the physical z-plane and the transformed ζ -plane, where the
streamlines are circles. Hence, from

d

dζ
=

dwΓ

dζ

d

dwΓ

=
1

ζ

Γ

2πi

d

dwΓ
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(2.8) can be rewritten as

−Im

[
Γ

2πi

d

dwΓ

(
log

∣∣∣∣dz0

dζ0

∣∣∣∣ + iω

)]
=

∂ω

∂ψΓ

= 0,

that is, the vortex equilibrium loci are those points where ∇ω is parallel to the pure
swirling flow velocity.

Looking at the vortex velocity ż0 from the dynamical system point of view, the
vortex motion is also governed by a Hamiltonian system on the z-plane,

ṙ0 =
∂Hz

r0∂ϑ0

, r0ϑ̇0 = −∂Hz

∂r0

, (2.11)

with the Hamiltonian Hz being related to the Hamiltonian Hζ by the Routh (1881)
rule:

Hz = Hζ +
κ

4π
log

∣∣∣∣ dz

dζ

∣∣∣∣. (2.12)

Following the same approach as Zannetti & Franzese (1994), the motion of the
vortex on the z-plane can be represented on the ζ -plane by assuming its transformed
coordinates (ρ0, ϕ0) to be non-canonical coordinates. The vortex velocity then becomes

ρ̇0 = J
∂Hz

ρ0∂ϕ0

, ρ0ϕ̇0 = −J
∂Hz

∂ρ0

, (2.13)

with J = |dζ/dz|2. The ε power series expansions of Hz and J are

Hz = Hζ + ε
κ

4π
g(ρ0, ϕ0) + O(ε2), J = 1 − 2εg(ρ0, ϕ0) + O(ε2)

respectively, with

g(ρ0, ϕ0) =
∂

∂ε

∣∣∣∣ dz

dζ

∣∣∣∣
ε=0

.

Equations (2.11) therefore reduce to

ρ̇0 =
∂Hζ

ρ0∂ϕ0

+ ε

[
κ

4π

∂g(ρ0, ϕ0)

ρ0∂ϕ
− 2g(ρ0, ϕ0)

∂Hζ

ρ0∂ϕ0

]
+ O(ε2),

ρ0ϕ̇0 = −∂Hζ

∂ρ0

− ε

[
κ

4π

∂g(ρ0, ϕ0)

∂ρ0

− 2g(ρ0, ϕ0)
∂Hζ

∂ρ0

]
+ O(ε2),

that is, to a perturbation of system (2.2). As predicted by the Poincaré–Birkhoff
theorem, only a finite even number of fixed points remains in the perturbed system,
and these are alternately stable and unstable.

The equilibrium manifold (2.8) is the locus of the vortex equilibria for different Γ/κ

values, which are defined by (2.9), while a Hamiltonian manifold (2.3) is pertinent to a
single Γ/κ value. The fixed points of the system (2.13) are those points that belong to
the equilibrium manifold and satisfy (2.9). Their number does not necessarily match
the number of branches of the equilibrium manifold.

The following example elucidates the point by considering a more general quasi-
circular body. The geometry has been obtained by taking inspiration from the
Theodorsen & Garrick (1934) mapping

z = ζ exp

∞∑
n=0

cnζ
−n
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Figure 2. Vortex Hamiltonian and equilibrium manifold for a quasi-circular domain:
(a) Γ/κ = 9/5, (b) Γ/κ = 4/3.

which allows a general quasi-circular body of the z-plane to be obtained as conformal
mapping of the unit circle of the ζ -plane.

As an example, figure 2 refers to the case where cn�=3,6 = 0, c3 = 0.05, c6 = i0.07.
For this example, two Hamiltonian manifolds have been computed for Γ/κ = 9/5
and Γ/κ = 4/3 and their contour map has been superimposed onto the equilibrium
manifold, as shown in figure 2. The equilibrium manifold has six elliptic point branches
and six hyperbolic point branches. Three pairs of these branches are connected to
each other at points labelled C, and they form three closed lines. The Hamiltonian
map pertinent to Γ/κ =9/5, on figure 2(a), shows 12 fixed points, one for each
branch of the equilibrium manifold, while for Γ/κ = 4/3, on figure 2(b), there are
six fixed points. It can be inferred that, for each point C, there is a critical value
4/3 < Γ/κ < 9/5 for which a pair of elliptic and hyperbolic points merge at point C

and cancel each other.

3. Flow past infinite surfaces
Let us consider a flow past a two-dimensional body which extends to infinity. This

is analogous to the previously mentioned swirling flow seen in a scale that is small
compared to the cylinder mean radius.

Let us first consider a flow past an infinite flat plate. By assuming the flat plate
is coincident with the real axis of the complex ζ -plane, with ζ = ξ + iη, the complex
potential wζ pertinent to an asymptotic uniform flow with velocity q , parallel to the
wall, and to a point vortex, located at ζ0 = ξ0 + iη0 with circulation κ , is

wζ = qζ +
κ

2πi
log

(
ζ − ζ0

ζ − ζ 	
0

)
. (3.1)

As the vortex velocity is

ζ̇ 	
0 = q +

κ

4πη0

, (3.2)

any η0 = const line is the locus of the equilibrium points for vortices with κ/q = −4πη0.
Once the geometry is perturbed, this locus reduces to a finite number of alternating
stable and unstable equilibrium points.
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As a result of the Riemann mapping theorem, any simply connected flow region
bounded by an infinite boundary can be transformed by conformal mapping onto
the upper half of the ζ -plane, with the boundary mapped onto the real axis and with
the infinity mapped to infinity. Denoting such a mapping by z = F (ζ ), the complex
potential wz on the z-plane is wz = wζ (F

−1(z)).
Let us consider the case where limz→∞ dz/dζ is finite. Without any loss of generality

it can be assumed that limz→∞ dz/dζ = 1; therefore q is the asymptotic uniform flow
velocity on the z-plane.

According to the previously mentioned Routh rule (2.6), with ζ ′	
0 given by (3.2), the

vortex velocity equilibrium equation is

1 +
κ

4πq

[
1

η0

+ i
d

dζ

(
log

dz

dζ

)]
= 0. (3.3)

Separating the imaginary and real parts, the two following equations are obtained:

Re

[
d

dζ

(
log

dz

dζ

)]
= 0, (3.4)

κ

q
= − 4π

1/η0 − Im[(d/dζ )(log dz/dζ )]
. (3.5)

Equation (3.4) is universal; it only depends on the body shape and defines the
vortex equilibrium loci, that is, the generalized Föppl curves, while equation (3.5)
defines the κ/q value necessary for a vortex to stand at an equilibrium point.

Such a formulation of vortex velocity and equilibrium conditions is based on the
definition of the vortex position by means of its (ξ0, η0) coordinates on the transformed
ζ -plane. Due to the Riemann mapping theorem, this procedure is general, but not
always the most convenient. As shown in what follows, however, it can be rearranged
to avoid explicit mention of the ζ -plane.

Let us consider the complex potential w̃(z) relevant to the pure potential (κ = 0)
flow past the infinite body under consideration. In general, such a w̃(z) potential can
be obtained by conformal mapping or other means (for example, as a distribution of
singularities), without any need for the z = F (ζ ) mapping. Since the stream function
ψ̃ = Im(w̃) at the body contour takes the value ψ̃b = 0, the w̃(z) complex variable
function can be interpreted as the inverse ζ = F −1(z) mapping:

ζ =
w̃(z)

q
. (3.6)

In fact it maps the flow region of the z-plane onto the upper half of the ζ -plane,
with identical points at infinity, without introducing spurious singularities and with
limz→∞ dζ/dz = 1.

The vortex velocity (2.6) can be rearranged as

ż	
0 =

{[
1 +

κ

4πψ̃
+

κ

4πi

d2w̃/dz2

(dw̃/dz)2

]
dw̃

dz

}
z=z0

, (3.7)

that is, as a function of (x0, y0) vortex coordinates on the physical z-plane.
For dw̃/dz �= 0, the vortex equilibrium equation is

1 +
κ

4πψ̃
+

κ

4πi

(
d2w̃/dz2

(dw̃/dz)2

)
z=z0

= 0, (3.8)
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whose imaginary part,

Re

[
d2w̃/dz2

(dw̃/dz)2

]
= 0, (3.9)

defines the vortex equilibrium manifold, that is, the generalized Föppl curve (3.4).
This equation relates the vortex equilibrium to the pure potential flow in a compact
and simple way. It suggests the same kinematic property of the vortex equilibrium
manifold given by (2.10) for the swirling flow,

∂ω

∂ψ̃
= 0, (3.10)

with ω being the complex velocity argument, ω = − arg(dw̃/dz). Equilibrium equation
(3.9) can be rearranged as

Re

[
d2w̃/dz2

(dw̃/dz)2

]
= Re

[
d

dw̃
log

(∣∣∣∣dw̃

dz

∣∣∣∣ e−iω

)]
= − ∂ω

∂ψ̃
= 0, (3.11)

that is, the equilibrium manifold has the property of being the locus where ∇ω is
parallel to the streamlines of the pure potential flow.

The real part of (3.8) yields (3.5), written in terms of pure potential flow:

κ = − 4π

1/ψ̃ + Im[(d2w̃/dz2)/(dw̃/dz)2]
, (3.12)

which allots the values of κ to the equilibrium manifold.
The Hamiltonian nature of vortex motion allows the vortex trajectories to be

traced as contour lines of the proper Hamilton function, defined by (2.12), where Hζ

is the Hamiltonian pertinent to the ζ -plane flow, that is, Hζ = qη0 + (κ/4π) log η0. The
Hamiltonian Hz is therefore expressed by the relationship

Hz = qη0 +
κ

4π
log η0 +

κ

4π
log

∣∣∣∣ dz

dζ

∣∣∣∣ (3.13)

which depends on the (ξ0, η0) vortex position on the transformed ζ -plane. Following
the same reasoning as above, it can be expressed on the physical z-plane as

Hz = ψ̃ +
κ

4π
log ψ̃ − κ

4π
log

∣∣∣∣dw̃

dz

∣∣∣∣ . (3.14)

3.1. Equilibrium manifold and vortex trajectory examples

As an example of equilibrium manifold detection and vortex trajectory tracing, let
us consider a flow past a flat surface with an orthogonal flat plate. Let this body
be represented by the real axis of the complex z-plane and by the imaginary axis
segment 0 � y � 1. The mapping

z =
√

ζ 2 − 1 (3.15)

transforms this body onto the real axis of the ζ -plane. Figure 3, shows the equilibrium
manifold inferred from (3.4), and the Hamiltonian contour lines for a vortex standing
at an equilibrium point.

The vortex has been selected by assuming its ζ -plane abscissa as ξ0 = 3; from a
trial and error procedure on (3.4) its ordinate is η0 = 1.633. From (3.5) its circulation
is κ/q = −21.440, with the plate height assumed as the reference length. Its location
mapped back on the z-plane is z0 = 2.871 + 1.706 i. The Hamiltonian contour line
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q

Figure 3. Vortex Hamiltonian contour lines (solid) and equilibrium manifold (dash-dot) for
an orthogonal flat plate.

q

Figure 4. Vortex Hamiltonian contour lines (solid) and equilibrium manifold (dash-dot) for
an arbitrary wall.

pattern shows that the selected vortex has an elliptic, that is stable, fixed point on the
selected point of the right-hand branch of the equilibrium manifold. It has two other
equilibrium points: an unstable one at the hyperbolic fixed point belonging to the
central branch and a stable one at the elliptic point belonging to the left-hand branch.
Below the separatrix, the vortex moves from right to left, above it from left to right
and in between the vortex follows closed orbits encircling the elliptic fixed points. The
scenario strongly resembles that of the swirling flow past a finned cylinder shown in
figure 1. The three stable and unstable alternating fixed points of figure 3 can be seen
as the surviving fixed points among the y = yeq = −κ/(4πq) equilibrium locus relevant
to the flow past a flat plate. These are analogous to the upper three fixed points of
figure 1. Since the separatrix reconnects at infinity, there is not a fourth fixed point
that corresponds to the fourth fixed point of the swirling flow.

A second example is shown in figure 4. The flow past an arbitrarily shaped wall
is considered on the z-plane. The real axis of the ζ -plane has been mapped onto
the wall according to the following mapping chain that includes a variant of the
Theodorsen–Garrick mapping:

z =
h(ζ ) + 1

ih(ζ ) + 1

with

h(ζ ) =
ζ − i

ζ + i
exp

∞∑
j=0

aj

(
ζ − i

ζ + i

)−j

and with the aj coefficients determined according to the Ives (1976) method.
The equilibrium manifold presents five branches, with a pair of stable and unstable

branches connected to each other. In a way similar to the swirling flow of figure 2,
there are five equilibrium points for the κ/q values above a critical value, as shown
in figure 4, and three for values below it.

The third example reproduces the Föppl solution pertinent to the flow past a
semicircular obstacle. Assuming a unit radius, the complex potential of the pure
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q

(a)

(b)

Figure 5. Equilibrium manifold, vortex Hamiltonian (a) and streamlines (b) for a
semicircular obstacle.

potential flow is

w̃ = qz +
q

z
.

Equation (3.9) yields

x[(x2 + y2 − 1)2 − 4y2(x2 + y2)] = 0,

that is, the vortex equilibrium manifold is formed by the imaginary axis (x = 0) and
by the original Föppl curves

2y = r − 1

r
,

with r =
√

x2 + y2. According to (3.14), the Hamiltonian pertinent to a free point
vortex is

Hz = qy

(
1 − 1

x2 + y2

)
+

κ

4π
log

[(
y − y

x2 + y2

) ∣∣∣∣ (x + iy)2

(x + iy)2 − 1

∣∣∣∣
]

.

The equilibrium manifold, Hamiltonian contour lines and flow streamlines are
represented in figure 5. Assuming the cylinder radius as the reference length, the
vortex is located at r = 2, that is, x0 = 1.854, y0 = 0.75; the vortex circulation, provided
by (3.12), is κ/q = −8.836.

4. Channel flow
The previous analysis can be extended to a flow past a bluff body that protrudes

from a wall of a two-dimensional channel. Let us consider the channel as infinite and
represent it on the complex z-plane. By conformal mapping, it can be transformed
onto the strip 0 � η � π of the complex ζ -plane, whose width is d = π. For a vortex
located at ζ0, the complex potential on the ζ -plane is

wζ = qζ +
κ

2πi
log

{
sinh[(ζ − ζ0)/2]

sinh[(ζ − ζ 	
0 )/2]

}
(4.1)
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where q = Q/π, with Q the channel mass flow. The complex velocity on the ζ -plane
then becomes

dwζ

dζ
= q +

κ

2πi

{
1

2 tanh[(ζ − ζ0)/2]
− 1

2 tanh[(ζ − ζ 	
0 )/2]

}
(4.2)

and the vortex velocity on the ζ -plane is

ζ̇ 	
0 = lim

ζ→ζ0

[
dwζ

dζ
− 1

ζ − ζ0

]
= q +

κ

4π

1

tan η0

. (4.3)

The vortex velocity on the physical z-plane is given by the Routh rule (2.6). It follows
that, since ζ̇ 	

0 is a real quantity, the vortex equilibrium manifold is expressed in the
channel flow by the same equation (3.4),

Re

[
d

dζ

(
log

dz

dζ

)]
= 0,

as for the flow past an infinite surface. The vortex strength at the equilibrium points
is obtained by setting the real part of vortex velocity (2.6) to zero:

κ

q
= − 4π

1/ tan η0 − Im[(d/dζ )(log dz/dζ )] ζ=ζ0

. (4.4)

The Hamiltonian Hz on the physical z-plane can be obtained by the Routh rule as
expressed by (2.12), with the ζ -plane Hamiltonian Hζ being

Hζ = qη0 +
κ

4π
log(sin η0).

The vortex equilibrium manifold and Hamiltonian can be obtained directly on the
z-plane by using the same artifice employed in the case of the flow past an infinite
surface, that is, by setting

ζ =
w̃(z)

q
, (4.5)

where w̃(z) is the complex potential of the pure potential flow. Recasting (2.6) and
(4.3), the vortex velocity becomes

ż	
0 =

[(
1 +

κ

4π

1

tan ψ̃
+

κ

4πi

d2w̃/dz2

(dw̃/dz)2

)
dw̃

dz

]
z=z0

. (4.6)

The vortex equilibrium manifold is defined by its imaginary part, which yields the
same equation (3.9) as for the flow past an infinite wall. Equation (3.11) also holds,
with the same kinematic meaning.

The vortex intensity on the equilibrium manifold is given by

κ = − 4π

1/ tan ψ̃ + Im[(d2w̃/dz2)/(dw̃/dz)2]
. (4.7)

In terms of pure potential flow, the vortex Hamiltonian is

Hz = ψ̃ +
κ

4π
log[sin(ψ̃/q)] − κ

4π
log

∣∣∣∣dw̃

dz

∣∣∣∣ . (4.8)

4.1. Channel flow example

The flow past a plate protruding from a wall of a constant-width channel is considered.
As shown in figure 6, the flow region can be obtained as a conformal map of a strip
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Figure 7. Vortex equilibrium manifold and Hamiltonian contour lines for an orthogonal flat
plate inside a channel.

of the ζ -plane. The mapping can be summed in a sequence of steps. The strip of
the ζ -plane is mapped by µ = exp(ζ ) onto the upper half-µ-plane; then the real axis
segment A − B of the µ-plane is mapped, by elementary mapping, onto a circular arc
of the λ-plane and the z-plane channel is obtained from z = log λ.

The location of the circular arc centre λc on the λ-plane defines the plate camber
on the z-plane; the plate reduces to a flat plate for λc = 0, as shown in the figure,
while for λc < (>)0 the plate is concave on its right(left)-hand side.

Figure 7 shows the vortex equilibrium manifold and the Hamilton function contour
lines for the flat plate case and for the vortex circulation κ/q = −133.043, with d/π
assumed as the reference length.

5. Kutta condition
When the body presents a sharp edge, the Kutta condition has to be enforced in

order to avoid a velocity singularity, that is, the separation has to occur at the edge.
The vortex equilibrium points are therefore reduced from an infinite to a finite or null
number. For instance, in the case of the flow past an orthogonal flat plate considered
in § 2, it has been proved by Smith & Clark (1986) that there are no equilibrium points
for Kutta-condition-satisfying vortices. In Zannetti & Iollo (2003), it was argued that
this non-existence is related to the symmetry. It was shown that once the symmetry
of the orthogonal flat plate is broken by bending the plate or by applying suction,
standing vortices that satisfy the Kutta condition exist. In his original paper, Föppl
(1913) observed this non-existence and cited the work of Prandtl, stating existence for
bent plates. Incidentally, the Föppl assertion on non-existence, though correct, was
proved by a fallacious argument that neglects the Routh rule on vortex equilibria.

The same kind of result can be observed for a plate inside a channel, as described in
the previous section. Standing point-vortex solutions that satisfy the Kutta condition
can be found for cambered plates inside a channel: the lower the camber, the greater
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the vortex circulation and the further away its location. On the other hand a flat
plate does not admit a standing vortex which satisfies the Kutta condition.

These channel considerations have some relevance to the vortex-patch solutions
that, in § 1, were related to point-vortex solutions. It has been mentioned that the
point-vortex solution can be considered as the first element of a family of constant
circulation and increasing area vortex patches whose last element is partially bounded
by the solid boundary. The non-existence of a point-vortex solution could suggest
the non-existence of the entire family, that is, of a finite-area wake. Turfus (1993)
describes an attached vortex patch in the flow past a flat plate in a channel that
contradicts this conjecture. However, Turfus (1993) himself casts some doubt on the
convergence of his numerical process. An attempt to replicate his results was made
by Gallizio (2004), who confirmed the difficulties involved in assessing a converging
numerical solution for a finite-area wake. This is worthy of further investigation.

This symmetry issue, besides its intriguing theoretical interest, has practical rele-
vance, since a symmetric bluff body capable of capturing a steady vortex when the
flow reverses could be useful.

In what follows it is shown that, in addition to the orthogonal plate, there are other
symmetric bodies that cannot satisfy the Kutta and vortex equilibrium conditions
simultaneously. It is proved that the symmetric Ringleb snow cornice (Ringleb 1961)
is among such bodies. Several other examples can be provided which show that
standing vortices past symmetric bodies do not exist, with the separation taking place
from the body point on the axis of symmetry. In his original paper, Föppl observed
that this is the case for a semicircular obstacle. Cai, Liu & Luo (2003) observed the
same result for semielliptic bodies.

These results might suggest that symmetry in general does not allow for standing
vortices with a symmetric separation point. In what follows it is argued that this
is true for a certain class of symmetric bodies, but that other classes of symmetric
bodies exist with allowed numbers of standing vortices that satisfy the Kutta condition
ranging from one to infinity.

Let us map the body under consideration onto the real axis of the ζ -plane with the
cusp zT mapped onto ζ = ζT = 0. The complex velocity on the ζ -plane is

dwζ

dζ
= q +

κ

2πi

(
1

ζ − ζ0

− 1

ζ − ζ 	
0

)
, (5.1)

and the Kutta condition (dwζ/dζ )ζ =0 = 0 is expressed by the equation

κ

q
= −π

ξ 2
0 + η2

0

η0

. (5.2)

Using (3.5), one obtains

ξ 2
0 − 3η2

0 − η0

(
ξ 2
0 + η2

0

)
Im[(d/dζ )(log dz/dζ )]ζ0

= 0; (5.3)

thus, a (ξ0, η0) manifold is defined that will be denoted the ‘Kutta manifold’ in what
follows. The intersections of the equilibrium manifold (3.4) with the Kutta manifold
are the positions of standing vortices that satisfy the Kutta condition.

The Ringleb snow cornice (Ringleb 1961) is obtained by mapping the upper half-
ζ -plane onto the z-plane by means of the transformation z = g(ζ ; ζ1):

z = ζ +
ζ 2
1

ζ − ζ1

. (5.4)

Let the complex parameter ζ1 be ζ1 = a+ib. For b < 0, the upper half of the ζ -plane is
mapped onto a region of the z-plane bounded by a cusped line extending to infinity.
The cusp corresponds to ζ = ζT = 0 and is located at zT = −ζ1.
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Figure 8. Ringleb snow cornices: (a) ε = 0, (b) ε = 0.5.

Since kz = g(kζ, kζ1), altering ζ1 by a factor k has the effect of changing the scale
and not the shape of the cusped boundary; therefore the shape family defined by the
mapping depends on the single parameter a/b. Moreover, for a = 0, the cusped line
is symmetric. Let us assume ζ1 = ε − i. Figure 8 shows the ε = 0 and ε = 0.5 shapes.

For ε = 0, the equilibrium manifold (3.4) on the ζ -half-plane (η0 > 0) has three
branches expressed by the equations

ξ0 = 0, (5.5a)

η0 = −1 −
√

1 + ξ 2
0√

3
(ξ0 < −

√
2), (5.5b)

η0 = −1 +

√
1 + ξ 2

0√
3

(ξ0 >
√

2). (5.5c)

In order to discuss physically reasonable flows, we look for standing vortices that
are pertinent to flows that separate at the cusp and reattach downstream, that is, for
q > 0, for vortices standing on the branch given by (5.5c), whose substitution into the
Kutta manifold (5.3) yields(

1 + 2ξ 2
0

)√
3
(
1 + ξ 2

0

)
− 2

(
1 + ξ 2

0

)
= 0

which does not have real roots for ξ0 >
√

2. Therefore, there are no standing vortices
that satisfy the Kutta condition in the flow past the symmetric Ringleb snow
cornice.

Conversely, for ε �= 0, the snow cornice is not symmetric and there are standing
vortices that satisfy the Kutta condition. Figure 9 shows the case where ε =0.5,
in which the equilibrium and Kutta manifolds intersect. On figure 9(a), the
Hamiltonian contour lines show that the intersection occurs at a stable equilibrium
position; on figure 9(b) the streamline pattern shows that the Kutta condition is
satisfied.

As previously mentioned, these results might suggest the non-existence of standing
vortices with symmetric separation points in a flow past symmetric bodies. This is
not the case if we consider that the flow past an infinite flat plate has a locus of such
vortices. If the plate is represented as the real axis of the ζ -plane, the line

η =
ξ√
3

(5.6)

is the locus of standing vortices with circulation

κ

q
= −π

ξ 2
0 + η2

0

η0

, (5.7)

which are all pertinent to flows separating on ζ = 0.
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Figure 9. (a) Hamiltonian, (b) streamlines, equilibrium and Kutta manifolds for a
non-symmetric Ringleb snow cornice.

In general, the transformation that maps the upper half of the ζ -plane onto a
region bounded by a line extending to infinity can be written as

z = ζ +

∞∑
n=1

cn

(ζ − ζ1)n
. (5.8)

In order to represent bodies which have the imaginary axis as the symmetry line, let
us assume ζ1 as pure imaginary. Thus, the cn coefficients should be real/imaginary
for odd/even n.

Let N denote the index of the first non-null cn coefficient in the series (5.8). Here
we show that standing vortices have little chance of satisfying the Kutta condition for
N = 1, but this chance increases for N > 1. The argument is based on the asymptotic
far-field behaviour of the equilibrium manifold (3.4) and the Kutta manifold (5.3).
Since for ζ → ∞, z = ζ , the far-field asymptotic behaviour on the z-plane is the same
as on the ζ -plane. The equilibrium and Kutta manifold series expansions are

Re

[
N(N + 1)

cN

ζN+2
+ O

(
1

ζ

)N+3]
= 0, (5.9)

ξ 2 − 3η2 − η(ξ 2 + η2)Im

[
N(N + 1)

cN

ζN+2
+ O

(
1

ζ

)N+3]
= 0 (5.10)

respectively. Thus, asymptotic directions (ϕeq) of the equilibrium manifold branches
are defined by Re(cNζ −(N+2)) = 0, that is,

(N + 2)ϕeq = j
π

2
+ mπ

with j = 0 for even N , j = 1 for odd N and m =0, 1, 2, . . . . If this analysis is restricted
to the first quadrant, the Kutta manifold has a unique branch whose asymptote for
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Figure 10. Kutta and equilibrium manifolds and asymptotes for a symmetric Ringleb
snow cornice.

(a) (b)
Equil.

Kutta

π/4
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Figure 11. Kutta and equilibrium manifolds and asymptotes for N = 2 cornice.
(a) streamlines, (b) Hamiltonian contour lines for κ/q = −16.411.

any value of N is the line η = ξ/
√

3, that is, the line with direction

ϕKutta =
π

6
.

Hence, for N =1, the asymptotes of the equilibrium and Kutta manifolds are parallel
(ϕeq = ϕKutta = π/6) with little chance of intersecting. All the previously considered
examples of symmetric bodies, that is the symmetric Ringleb snow cornice, orthogonal
plate, semicircle and semiellipses, belong to this N = 1 class. For N > 1 the asymptotic
directions of the equilibrium and Kutta manifolds are different and have greater
chances of intersecting.

Examples supporting this statement are provided if we consider the bodies defined
by the mapping

z = ζ +
(−ζ1)

N+1

N(ζ − ζ1)N
. (5.11)

In its series expansion (5.8) all the coefficients cn are null except for n= N . Assuming
Im(ζ1) < 0, it maps the upper ζ -half-plane onto a region extending to infinity bounded
by a cusped line that, for N = 1, coincides with the Ringleb snow cornice. The cusp is
located at zT = z(0) and the boundary is symmetric for Re(ζ1) = 0. Let us set ζ1 = −i;
hereafter the reference length on the physical z-plane is N |zT |.

Figure 10 shows the equilibrium and Kutta manifolds and their asymptotes for
N = 1, that is, for the symmetric Ringleb snow cornice. The manifold behaviour
confirms the non-existence of standing vortices that satisfy the Kutta condition, as
previously proved. The behaviour of the equilibrium and Kutta manifolds for an
orthogonal plate, semicircle and semiellipse are very similar to those shown here.

For N = 2, the equilibrium manifold has a stable equilibrium branch on the first
quadrant with an asymptote defined by ϕeq = π/4. As shown in figure 11, it intersects
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Figure 12. Kutta and equilibrium manifolds and asymptotes for the N =3 cornice.
(a) streamlines, (b) Hamiltonian contour lines for κ/q = −8.788.
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Figure 13. Kutta and equilibrium manifolds and asymptotes for the N =5 cornice.
(a) streamlines, (b) Hamiltonian contour lines for κ2/q = −32.964.

the Kutta manifold (z0 = 2.184 + 1.259 i). The relevant vortex circulation is
κ/q = −16.411. The streamline pattern is shown on figure 11(a), while the Hamiltonian
contour lines are drawn on figure 11(b).

For N = 3, the equilibrium manifold has two branches in the first quadrant with
asymptotes defined by ϕeq1

= π/10 (unstable equilibrium branch) and ϕeq2
= 3/10π

(stable equilibrium branch). As shown in figure 12, there is a single intersection of the
second branch with the Kutta manifold at z0 = 1.142 + 0.637 i with vortex circulation
κ/q = −8.788.

The Kutta manifold asymptote, for the considered mapping (5.11), is the y =
tan(π/6)x line, while the equilibrium manifold branch asymptotes are the y = tan(ϕeq)
x − 1 lines. The first quadrant equilibrium asymptotes intersect the Kutta asymptote
if ϕeq > π/6.

The manifold intersections are always close to the asymptote intersections, becoming
closer and closer as N increases. Therefore, it is to be expected that the equilibrium
manifold branches pertinent to ϕeq > π/6 undergo intersections with the Kutta
manifold, while those pertinent to ϕeq � π/6 do not. The N = 3 case (figure 12) is an
example of this behaviour. As a further example, let us consider the N =5 case. This
has three equilibrium manifold branches in the first quadrant whose asymptotic slopes
are ϕeq1

= π/14 (stable), ϕeq2
= 3/14π (unstable), ϕeq3

= 5/14π (stable), respectively. The
first branch does not intersect the Kutta manifold, while the other two branches
intersect it at z02

= 4.544 + 2.623 i, with κ2/q = −32.964 and z03
= 0.612 + 0.320 i, with

κ3/q = −4.810, respectively. Figure 13 shows the intersection of the unstable branch,
and figure 14 the intersection of the stable branch of the equilibrium manifold with
the Kutta manifold. The streamline patterns show that the Kutta condition is satisfied
while the vortex Hamiltonian contour lines show the nature of the equilibrium.

The number of equilibrium branches asymptoting to ϕeq > π/6 increases with N

and, as a consequence, the number of standing vortices that satisfy the Kutta condition
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Figure 14. Kutta and equilibrium manifolds and asymptotes for the N = 5 cornice.
(a) streamlines, (b) Hamiltonian contour lines for κ3/q = −4.818.

also increases. For N → ∞, the boundary becomes the real axis of the z-plane, and the
Kutta manifold coincides with the y = tan(π/6) x line and it is the locus of standing
vortices for a flow separation at zT = 0.

The Kutta condition is a way of modelling the separation that occurs at a sharp
edge. Since separation takes place at sharp edges in the real world, the existence of
very similar geometries that allow, or do not allow, standing point vortices to satisfy
the Kutta condition may seem odd. It is known that, depending on the geometry,
not all obstacles admit a finite-area wake. Since the point vortex is a model for a
region with closed streamlines, the above analysis suggests the geometrical property
of a class of obstacles that admit, or do not admit, a finite-area wake.

Moreover, during the review process, one referee remarked on the difference between
‘wall’ and ‘body’, observing that all the described N = 1 walls can be seen as the upper
half of bodies which are symmetric with respect to the real axis. On the other hand, the
N > 1 walls have sections below their y = 0 asymptote and cannot be considered as the
upper halves of non self-intersecting bodies. The referee suggested that the conjecture
about the non-existence of standing vortices that satisfy the Kutta condition may still
be valid for bodies which are symmetric with respect to the x- and y-axes.

6. Conclusions
The analysis has been carried out in the highly idealized framework of two-

dimensional potential flow and point vortices.
The equilibrium conditions of a point vortex in a flow past a locally deformed wall

have been studied. Equilibrium locations have been represented as fixed points of the
vortex Hamiltonian contour line map. By analogy with the equilibrium condition of a
point vortex in swirling flow past cylinders, it has been shown that such locations on
the Hamiltonian map correspond to conditions of stable and unstable equilibrium,
in a pattern that can be related to the Poincaré–Birkhoff fixed-point theorem. Once
the physical z-plane is mapped onto a transformed ζ -plane, the Routh (1881) rule
provides the main tool to study the vortex equilibrium condition. The two equations
that define vortex equilibrium have been put in a form such that the first one (3.4)
only depends on the body geometry and defines the manifold which is the locus of
the vortex equilibrium, equivalent to the Föpple curve for semicircular bumps, while
the second equation (3.5) is written in a form that defines the vortex circulations.

By considering the complex potential w̃(z) of the pure potential flow, an equivalent
result for the vortex equilibrium locus (3.9) and vortex circulations (3.12) can be
obtained together with a kinematical property (3.10) of the equilibrium manifold.

The requirement that the flow separates at a given point, that is, the enforcement
of the Kutta condition, defines a Kutta manifold, whose first quadrant branch has
the asymptotic direction ϕKutta = π/6. The intersections of the Kutta manifold with
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the equilibrium manifold are the locations of standing vortices that satisfy the Kutta
condition.

The existence of standing vortices that satisfy the Kutta condition for symmetric
bodies has been related to the value N of the index of the first non-null term in
the mapping expansion (5.8). It has been argued that for N =1 there are no such
vortices, while they exist for N > 1 and their number increases with N . For N → ∞
the body reduces to a flat plate, the Kutta manifold reduces to its general asymptote
y = x/

√
(3) and it is the locus of standing vortices for flows separating at z = 0.
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